cotx的不定积分为ln|dusinx|+C。∫cotxdx=∫(cosx/sinx)dx=∫(1/sinx)d(sinx)=ln|sinx|+C。根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。
不定积分
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。
不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
常用不定积分公式
∫1dx=x+C、∫1/xdx=ln|x|+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C
本文转载网络分享,文章版权归作者所有,网址:http://www.jfweb.cn/79866.html
免责声明:本文文章内容来源于网络由互联网用户自发贡献自行上传,本网站不拥有所有权,也不承认相关法律责任。如果您发现本站中有涉嫌抄袭的内容,请发送邮件至:glmpjh@163.com进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。